Midsemestral examination 2009 M.Math. IInd year Algebraic Number Theory : B.Sury

Instructions :

(0) This is an open-book test with ONE book (other than Problem books) chosen by each of you before entering the exam hall. Each of you may choose a different book if you want to !

(i) Answer any 3 questions from the global part G1 to G5 and any 3 from the local part L1 to L5.

(ii) The notation ζ_n is used for any primitive n-th root of unity.

(iii) You may use some standard results but quote them precisely. Be Brief !

G 1.

Let $K = \mathbf{Q}(\theta)$ where $\theta^5 = \theta + 1$. Show that $X^5 - X - 1$ is irreducible over \mathbf{Q} and that $\mathbf{O}_K = \mathbf{Z}[\theta]$.

Hint: Look at the polynomial mod 5; you may also use the fact that the discriminant is $(-1)^{\binom{n}{2}}((n^nb^{n-1}+(-1)^{n+1}(n-1)^{n-1}a^n))$ for an irreducible polynomial of the form $X^n + aX + b$.

G 2.

Determine the factorization of 31 in the ring of integers of $\mathbf{Q}(2^{1/3})$.

G 3.

Prove (briefly) that only finitely many primes ramify in the ring of integers of any given number field.

G 4.

Prove that $\mathbf{Q}(\zeta_{23})$ has class number > 1. *Hint* : You may use the fact that $\mathbf{Q}(\sqrt{-23}) \subset \mathbf{Q}(\zeta_{23})$.

OR

Determine the class group of $\mathbf{Q}(\sqrt{-6})$.

G 5.

Find (with proof) the fundamental unit of $\mathbf{Q}(\sqrt{13})$.

L 1.

Prove that the set of equations

$$10a^{2} + 34c^{2} = 17u^{2} + v^{2}$$
$$a^{2} + 5c^{2} = uv$$

do not have a common solution in \mathbf{Q}_{17} .

L 2.

Use Hensel's lemma to prove that $a \in \mathbb{Z}_3^*$ is a cube if and only if $a \equiv \pm 1 \mod 9\mathbb{Z}_3$.

L 3.

Show that $\mathbf{Q}_p(\zeta_{p^n})$ has degree $\phi(p^n)$ over \mathbf{Q}_p .

OR

Find the radius of convergence of the exponential series exp(x) over \mathbf{Q}_p .

L 4.

Prove that a totally ramified extension of a p-adic field k is given by adjoining the root of an Eisenstein polynomial over k.

L 5.

Let K denote an algebraic closure of \mathbf{Q}_p and \mathcal{O} denote the integral closure of \mathbf{Z}_p in K. Prove that \mathcal{O} is not Noetherian.

Hint : Show that \mathcal{O} has only one nonzero prime ideal and it is not finitely generated.

OR

Let K denote an algebraic closure of \mathbf{Q}_p . Let $\{b_n\}$ be a sequence of roots of unity of order coprime to p in K satisfying the following properties :

 $b_1 = 1, b_n \in \mathbf{Q}_p(b_{n+1}), [\mathbf{Q}_p(b_{n+1}) : \mathbf{Q}_p(b_n)] > n.$

Deduce that K is not complete by showing that the series $\sum_{n} b_n p^n$ does not converge in K.